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The work of Owen, Pincombe, and Rogers 3 makes use of integral momentum techniques to 
investigate the f low of an isothermal fluid in a rotating cavity with an imposed radial 
throughflow. This paper extends the method to include the entraining boundary layer in the 
source region and to include an integral energy equation to predict the temperature in the 
core of the fluid when the discs of the cavity are heated. The effects of fluid property 
variations and frictional heating are also taken into account. The effect of various 
approximations are discussed, and the way in which the computed heat transfer depends on 
the mass f low coefficient, the rotational Reynolds number and the type of disc temperature 
distribution is found. 
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I n t r o d u c t i o n  

In the design of gas turbine engines estimates are required of the 
convective heat transfer to rotating compressor and turbine 
discs. This paper presents a technique for predicting the 
turbulent convective heat transfer from two corotating discs 
with a forced radial outflow of fluid between the discs. A model 
experiment is considered in which the two discs, each of radius b, 
are rotating with angular velocity ~ (see Figure 1). The distance 
between the discs is s and each has a circular hole of radius a in 
the center. It is assumed that air at temperature T~ is blown 
uniformly into the cavity (that is, into the space between the 
discs) across the cylindrical surface r =  a, and that the rate of 
mass flow through this surface is rh. The air leaves the cavity 
through the cylindrical surface r = b. The temperatures of the 
discs are specified as functions of the distance r from the axis. 

The structure of the flow in isothermal conditions is well 
established from experimental and numerical studies (see, for 
example, Owen and Pincombe 1 and Chew, Owen, and 
Pincombe2); it is shown schematically in Figure 1. There is a 
source region (a < r ~< re) in which the incoming fluid is entrained 
into the boundary layers on the discs. For  r > re, these boundary 
layers become nonentraining and bear a strong resemblance to 
Ekman layers: for this reason they will be referred to as Ekman- 
type layers. The fluid is redistributed from the Ekman-type 
layers into a sink layer near r = b, ready for exit from the cavity 
through a shroud at r = b. The region between the Ekman-type 
layers, the source region, and the sink layer is referred to as the 
core: the radial and axial components of velocity are zero in this 
region. 

Integral momentum techniques were used by Owen, 
Pincombe, and Rogers 3 to predict the tangential component of 
velocity in the core and also the thickness of the Ekman-type 
layers on the discs, for an isothermal cavity; this paper will be 
referred to below as I. In the present contribution, the method is 
extended to include calculation of the entraining boundary 
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layer; also an integral energy equation is incorporated to allow 
prediction of heat transfer. Some allowance for fluid property 
variations has also been made. The integral momentum.method 
employed is an extension of that due to von K~irm~in 4 for the free 
disc (that is, a disc rotating in a quiescent infinite environment), 
and the method of calculating heat transfer is related to that of 
Dorfman 5 for the free disc. 

The flow in a heated cavity is not as well understood as that 
for the isothermal case. Owen and Onur 6 have reported 
unsteady nonaxisymmetric flow in a cavity with one heated disc. 
However, the three different heat transfer regimes for radial 
outflow identified by Owen and Onur show qualitative 
agreement with numerical results for laminar flow in which 
buoyancy terms were neglected (ChewT). From theoretical 
considerations supported by numerical results (Chew 8) it is 
expected that the flow structure in a heated cavity will be the 
same as for the isothermal case, provided that the temperature 
distributions are the same on each disc. When there is an axial 
temperature difference between the discs, buoyancy effects tend 
to transfer fluid between the two Ekman-type layers and the 
axial component of velocity is nonzero in the core. The results 
of a theoretical study of turbulent buoyancy-driven flow 
between two discs (Chew 9) may be compared with the linear 
Ekman-layer solution given in I; this suggests that buoyancy 
effects are negligible when the nondimensional group 
0.113(AT/Tref)Re~'SC~ 0.62s is small. Here ATis the temperature 
difference between the discs, Tre f is a reference temperature, Re~ 
is a rotational Reynolds number, and Cw is a mass flow rate 
parameter (Re~ and Cw are defined in Equation 2). This 
condition is satisfied in many cases of interest, and the transfer of 
fluid between the two Ekman-type layers will be neglected here. 
Further support for the validity of this assumption is provided 
by Long and Owen 1°.11 and by Northrop and Owen 12, who 
compare experimental results with the present predictive 
method. 

In the second section the basic integral equations are derived 
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under certain simplifying assumptions. Analytical solutions to 
the integral equations are possible in some cases, and these are 
presented in the third section. Numerical solutions of the 
equations are given in the fourth section, and the effects of some 
of the simplifying assumptions are investigated using these 
results. Finally, the main conclusions of this work are 
summarized in the fifth section. A detailed evaluation of the 
method against experimental results is presented by Northrop 
and OwenS2; one of their figures is included in this paper for 
immediate comparison. 

Derivation of the primitive integral equations 

The notation is similar to that used in I, but, in view of the slight 
differences which are necessary in discussing the heated cavity, 
all quantities will be redefined here. 

The axis of rotation of the discs is taken as the z-axis, and the 
disc surfaces are z = 0 and z = s. It is assumed throughout that 
there is symmetry in the axial direction about the plane z = ½s, 
and the subscript 0 is used to denote values on the disc at z = 0. 
An overbar is used to indicate values outside the boundary 
layers on the discs, whether these are the entrainment layers of 
the source region or the Ekman-type layers bounding the core 
region. The subscript I is used for values appropriate to the 
incoming air, and these values will be used as reference values 
where necessary. On occasion, mean values (especially of 
density and viscosity) are used, and they are denoted by the 
subscript m: thus 

pm = l ( / ~  + pO), /2m =½(/~ + ~0 ) (1) 

The local values of all quantities have no subscript except when 
they are independent of z within the boundary layer: then the 

Notation 

a 

b 
Bi, i=1 ,  13 
C 
Cp 

Cm 
Cw 
E 
f(r/) 
F(Pr) 
g(n) 
6(x) 

h(q, x) 
H 
]i, i = 1 , 6  

Ji, i = 1 , 6  

k 
K 

g n 
rh 
M 
n 

Nu 

Nu* 

P 
P 
P. 
p,. 
Pr 
q 
r 
R 
R~ 
Re 
R% 
S 

T 
U 

Inner radius of discs 
Outer radius of discs 
Coefficients in integral equations 
Inlet swirl fraction 
Specific heat at constant pressure 
Moment coefficient, 2M/piQ2b 5 
Mass flow rate coefficient, rh//~ib 
Eckert number, Q2r2/2ce(To- TI) 
Profile of radial component of velocity 
Factor in relationship between Nu *, Re, RT 
Profile of tangential component of velocity 
Factor in approximate expression for Nu, 
Equation 48 
Profile of enthalpy 
Enthalpy 
Integrals involving f(q), Off/), and h(r/, x), 
Equations 17 and 41 
Generalized form of the integrals It, Equations 
61 to 66 
Thermal conductivity 
Factor in approximate expression for Nu.v, 
Equation 56 
Coefficient in expression for Z~,o 
Total mass flow rate into cavity 
Moment on one disc 
Reciprocal of exponent in power law for 
velocity profiles 
Nusselt number for use with experimental 
comparisons, rqo/k I (T O - T l) 
Nusselt number used in Appendix A, 
rqo/kl(T o - ~ -  R~2/2cp) 
Static pressure 
p/pl~'~2b 2 

Coefficient in expression for •li* 
Coefficient in expression for 20 
Prandtl number 
Heat transfer in axial direction 
Radial coordinate 
Recovery factor 
Thermal Reynolds number, Equation 76 
Local Reynolds number, Equation 79 
Rotational Reynolds number, pt~'~b2/#i 
Distance between discs 
Temperature 
Radial component of velocity 

uo(r) 
13 

V 
W 
X 
Z 

7 

AT 
~(Pr) 

q 
0 
20 

P 
Tr 
"re, 

4, 
X 

~F 
f~ 
Subscripts 
0 
av  
b 
e 

I 
l 
lin 

m 
n 
r 
ref 

spec 
4, 

Scale factor for u 
Tangential component of velocity referred to 
axes rotating with the cavity 
6/Dr 
Axial component of velocity 
r/b 
Axial coordinate 
(3n + 5)/2(n + 1) 
Exponent in relationship between Nu*, Re, R r 
Ratio of local mass flow rate through 
boundary layer to ½th 
Pt6* lPI6~tn 
Thickness of boundary layer 
Difference in temperature of the two discs 
Correction factor for Nu when To - TI oc r 2, 
P r ~  
z/6* 
( H  o - H ) / H  o 
Parameter in linear theory, Equation 27 
Dynamic viscosity 
x=/2o 
Density 
Radial component of stress 
Tangential component of stress 
Tangential coordinate angle 
General correction for Nusselt number when 
Reynolds analogy does not hold 
~,,o/(T,,o)lm 
Angular speed of rotation of cavity 

Value on disc (except for Uo, 2o) 
Average over disc face 
Value when r = b 
Value at transition from entrainment to 
Ekman-type layer 
Value at inlet 
Local value independent of z 
Value using linear theory with p =P l , / z=# i ,  
~=1 
Mean of value on disc and in core 
Value for particular power law 
Radial component 
Reference value (usually inlet value or when 
Reynolds analogy holds) 
Value when T O - T l oc r 2, Pr # 
Tangential component 

Overbar indicates value in core 
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subscript I is used, and the local value of the mass flow rate 
through the boundary layer is denoted by ~h v 

The density of the fluid is p, its viscosity is/~, its temperature is 
T, and its total enthalpy H; the pressure is p and the velocity has 
components (u,v,w) in the radial, tangential, and axial 
directions, referred to a frame of reference rotating with the discs 
at an angular velocity D about the z-axis. Cylindrical polar 
coordinates (r, ~, z) are used, with the same rotating frame of 
reference, and it is assumed that all the variables are 
independent of ~. 

It is convenient at this point to define certain nondimensional 
parameters. A mass flow parameter Cw and a rotational 
Reynolds number R% are given by 

ffl plDb 2 
Cw =---i~ , Re ,=  /~1 (2) 

The nondimensional dependent variables of the problem are 

V= 6--~- 6 Pt 6" 2rhl 
~ - - -  - -  ~) = - 7 -  

Dr '  Pl 6~n' m 

o = H o - l ~ ,  p =  p (3) 
H 0 plD2b 2 

where p~ may be taken as iS, Po, or Pro; 6~, is the value of 6" 
obtained by neglecting the nonlinear terms in the isothermal 
equations (with uniform temperature TI) and taking y = 1; ~h I is 
the local mass flow rate through one boundary layer (so that, 
when all the incoming fluid is entrained equally into the two 
boundary layers, y= l ) .  Nondimensional axial and radial 
coordinates are defined as 

Z r 
~ / = ~ ,  x = ~  (4) 

In the following two subsections, integral momentum and 
energy equations will be derived for the boundary layer on the 
disc z = 0; they will be obtained by integrating the boundary 
layer equations between z = 0  and z=6*,  where 6* is the 
boundary layer thickness. Outside the boundary layer in the 
source region, it will be assumed that the tangential velocity can 
be calculated as for a free isothermal vortex (so that 
V+ 1 oc x -2) and that the total enthalpy, H is uniform. It is also 
assumed, when considering the boundary layer flow, that the 
radial component of velocity in 6" < z < s -  6" is negligibly small 
(compared to the speed of the disc). Thus,if VI = - 1, the integral 
equations for the entraining boundary layer reduce to those for 
a free disc. (Similarity of the flow and heat transfer in this layer 
to that of the free disc has previously been noted by Chew, 
Owen, and Pincombe z and Chew 7 in numerical studies of 
laminar flow.) No account has been taken of the sink layer in 
this study; the influence of the layer is confined to a small region 
near r = b, and so it is not expected to affect severely the heat 
transfer from the disc. 

The m o m e n t u m  equat ions 
The derivation of the integral momentum equations is similar to 
that in I, although some modification to allow for fluid property 
variations is required. In this section, it will be assumed that 
property variations across the boundary layer are negligible; p 
and # will be replaced by p~ and/h throughout the equations, 
where p~ and #z are functions of r but not of z. The influence of 
density variations across the boundary layer will be discussed 
further in the fourth section in the subsection entitled "The effect 
of variable density within the boundary layer." 

With the usual boundary layer assumptions, the continuity 
and momentum equations, in dimensional form, are 

l d  d 
r dr (p~ur)+~z (pzw)=O (5) 

1 d . d Pl dp dz r 
r dr (P'uZr) + fizz (p ,uw)-  ~- (v + fir) 2 + ~r = ~-z (6) 

1 d . d dz# 
r 2 dr (ptuvrZ) + ~z (plvw) + 2flptu = ~-z (7) 

~=0 (8) 
Using Equation 8 and the radial momentum equation outside 
the boundary layers, one can easily show that 

~Pr = (V + fir) 2 (9) 
p, 
r 

Here, as is consistent with the model described above, the 
contribution of the nonzero radial velocity in the source region 
to the pressure gradient has been neglected. 

The following forms are assumed for the velocity profiles in 
the boundary layer: 

u = uof(rl), v = vO(n) (10) 

where u 0 is a function of r only, f and g have to be specified in 
such a way that 

f(0) = g(0) = 0 (l 1) 

and 

f(t/) = 0, g(t/)= 1 when t/~> 1 (12) 

Further, it is assumed that 

f(n) - - - - * 1  as r/--*O (13) 
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(Note that 9 is defined in a slightly different way from the form 
used in I: there, the second of Equations 10 was v = 15[1 -9(q)] . )  

Using Equations 9 and 10 and integrating Equations 5 to 7 
gives 

11 d k 
Ptw = - r  drr (rpzu°6*) (14) 

12 d (rplu~6.) + p~ 6.5215 + 2Pt6*v~I4 = -Zr,o (15) 1 
r dr r 

13 d (r2 ptuo~6, ) + PI ~ + 211ptuo~6* = - ~*.o (16) 2 
r 2 dr 

where 3 

i,=f: f,,)d,~, I2--f/f2(rl)drh I3=f/f(r/)g(r/)dq 4 

I,=½-f/dIn)dn (17) 5 

It is assumed that, near the disc, the ratio of the radial and 
transverse components of stress is equal to the ratio of the radial 6 
and transverse components of the fluid velocity relative to the 
rotating disc (see, for example, von K&rman4). Hence, from 
relations 10 and 13, 7 

UO 
~'r,0 = / l"4~.0 (18) 8 

It is convenient to express Equations 15 and 16 in 
nondimensional form using Equations 2-4, together with the 9 
solution to the isothermal "linear" equations; in these the 
inertial terms in Equations 15 and 16 are negligible compared 10 
with the Coriolis terms, the radial mass flow is divided equally 
between the two boundary layers (so that y = 1) and the density 
is assumed constant with p = el throughout the boundary layer. 11 
(This solution has already been referred to in the definition of 6.) 

The equations then become 12 

x d 6 x d 7  ~P 2 ( 6 1 2  
6 d x - B ' T d x + B 2 + B 3 y - V  +(BgV +BsV+B6) \  (19) 13 

and 

x d P  x d T +  1 ud 
V ~x =BT s/ ~x Bs + Bg-~+ B,o ~ (20) 

where 

ud = %,o (21) 
(I'~b,0)lin 

and the coefficients B k are given in the first column of Table 1. In 
this form, the equations may be used for any choice of profiles 
for the velocity and temperature. 

In this paper, computations for turbulent flow are presented 
with velocity profiles which are generalizations of those used by 
von Khrm&na; they are the same as those used in I, and are given 
by 

f(q)=tl'/"( 1 -n), g(~/) = r/'/" (22) 

where n is usually taken as 7. It is assumed, as in I and by 
analogy with von Karman's  solution, that 

_ K 2 ,  f #t )2" -3 f (u~+f2)2- ,  (23) 
,+,o- 

where 

3n+5 
c~ = (24) 

2(n+ 1) 

T a b l e  1 The coefficients B k in the integral equations 

Approximate 
equations 

General n=~ Full equations 

2 2 

1 - ~* - 0 .625*  

2I~ 
- 3.94 

/2 

IlI~ 
3.50 

1214 

2I~1 3.94 
12 

0 0 

11-- 1 0.2 
I3 

- 2  - 2  

2I~ 
-2 .4 

13 

21~ 2.4 
/3 

/ 1 -  1 0 .2* *  
I6 

1_1 1.2"* 
16 

21~ 2.4** 
I6 

2 q_ (J'2 (0) 2~1(0) ~B11 
\J2(0) J1 (0 ) )  

1_c~+(J__2(0) ZI'I(O)~B x dTo* 

2J1(0)--}-(J'2(0)12(0 ) '12(0) J~(~)))  B130 

J21(0)J5(0 ) 
J1 (0)J4(0)J2(0) 

2J~(O)A(o) 

"/1 (0)J4(0)J2(O) 
j2(O)Jo(O) 

.11 (O)Ja(O)J2(O) 

J,(O) 1+(j~(0) J"3(0))B, ' 
J3 (0) 13(0)/ 

- 2 + ( ~ ( 0 )  ~ B , 2  x dTo 
~oTxx \1~(0) 3( ) !  

2J~ CO) 

J3(0) 

J3(0) ~J1 (0) au) / 

I-J, c0) (1 - ~ 1 * *  ( , I (0) ~] 
L4(O) t  1- °' J~05)Jo 

J~ (0) ~- o** 
(o) 
2J~(0) ** 

J~ (0)4 (0) 

. X d V l i n  
c ( = - _ _ _ _  

V~in dx "  

** Assuming h(r/, x) =g(q). 

so that ~ = 1.625 when n = 7. It is shown in I that, with these 
assumptions, 

6,*n _ P . i C j 2  _=Re;½x = -2 (25) 
b 

and 

Vlin = -- ~.oX - a (26) 

where 

20 = sgn(Cw)P'.lc J =- ' Reg½ (27) 
The constants K., P., and P" are tabulated for n = 5, 6, 7, 8, 9 in 
Table 4 of I; in particular (for the case used for the computations 
in this paper), 

K27=0.0225, P7=0.159, P~=2.22 (28) 

Using these expressions in Equation 21, one can show that 

vl,r" - , ,  , , / -  v v .  
- - P I \ P I /  Vlin 6 \ ~ /  [ l + ~ ) j  (29) 
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The energy equation 
As in the last section, property variations across the boundary 
layer are neglected. It will also be assumed that the thickness of 
the thermal boundary layer is the same as that of the velocity 
boundary layer• In the source region, this follows the method 
used by Dorfman 5 for the free disc. In the core outside the 
Ekman-type layers, it is assumed that ti = 0 and, from symmetry, 
i f=  0: hence there is no convection in this region. If radial 
diffusion of heat is negligible compared with axial diffusion, it 
follows that, in the steady state, all the temperature variation is 
within the momentum boundary layer• In reality, some radial 
diffusion will occur within the core, but this effect is expected to 
be small in cases of practical interest• 

The appropriate form of the energy equation is 

r dr (purn)  + Oz (pwH) = - Oz [q - u z ~ -  (v + f lr )z ,]  (30) 

where the total enthalpy H is defined as 

n = c p T  -4- ½[u 2 -t- (v -{- Q r )  2 -t- w 2] (31 ) 

q is the heat flux in the axial direction and cp denotes the specific 
heat of the fluid at constant pressure. The total enthalpy profile 
is assumed to have the form 

H = Ho[ l  - Oh(q, r)] (32) 

Two methods have been used for estimating h and the surface 
heat flux qo; they are described here, and a comparison between 
them is made in the subsection "The effect of varying Prandtl 
number•" The simplest method, motivated by the Reynolds 
analogy (see the Appendix), is to assume that 

h(q)=g(q) (33) 

and 

qo --  .~. Rt52x~ 1:, 0 
~ p = ( ( / 0 -  1-~ce) ~ (34) 

where ( and R are functions of the Prandtl number, Pr. When 
dissipation effects are neglected, the work of Dorfman s can be 
generalized to give the expression 

~=[1  + 5 ( P r - 1  " [-5Pr+l-] '~/ z,. o "~1/2-l-1 plv-rfi::. ) j (35) 
(This is identical with the result of von K/trm/m 13 for a fiat 
plate.) A commonly used approximation is 

= Pr-  0.4 (36) 

For the flow over a flat plate, Rotta 14 gives an expression for R 
which, when modified for a rotating disc, may be written as 

R =  1 +94.75Pr-°4(Pr  - 1) z~'° (37)- 
PI V2[)2r2 

where the coefficient 94.75Pr - ° 4  is obtained (as an 
approximation) by interpolation from Table 23.1 given by 
Schlichting) 5 Many authors, according to Schlichting, take 

R = Pr 1/3 (38) 

for turbulent flow• The effect of using the approximations 36 and 
38 instead of the more elaborate expressions 35 and 37 is 
discussed in the subsection "The effect of the temperature 
distribution on the disc." 

The second method makes some allowance for the variation 
of the function h(q, r) with Prandtl number and the temperature 
distribution on the disc. It is discussed in detail in the Appendix. 

The expression for q0 becomes 

qo [ ~  ,~ Rt~2~ "c~, o 
~ = Z  t ' o - ' -  2~e) v (39) 

where X is a function of Prandtl number and now also depends 
on the disc temperature distribution• The form used for g is 
discussed in the Appendix and is given by 

//I 1 - - / 6 ~  3 - 2~t 2(a 
Z = t / ~ _ / ~ )  - "  (40) 

where 

16 = h(q, x ) f (n )dq  (41) 

No explicit expression for h is used, and the integral I6 is 
determined as described below. 

Integrating Equation 30 across the boundary layer, using 
Equations 31, 32, and 39, and introducing the nondimensional 
variables, we get 

dO xdY0 x dH 0 x d l  6 
XO-x----BI1 7dxx '{-(BI2--0)/-I 0 dx 16 dx 0 

-- ~P I-X0 [~2b2x2 -1 • ,- ] 
+u13 - - [ % + ~  (~ZvO - R) + X -  1) (42) 

d y L v no 

where the coefficients B k are given in Table 1. 
For the first method, Z is replaced by (, 16 = I3 and d I 6 / d x  = O. 

Equation 42 is not used in the entrainment layer, but is used in 
the Ekman-type layer to determine 0. 

In the second method, Equation 42 is used in the entrainment 
layer (where 0 is known) to determine/6- For the Ekman-type 
layers, the equation is used to determine 0 and it assumed (see 
the appendix) that 16 is constant• 

Analytical solutions 

In certain cases, analytical solutions of the integral equations 
are available• These give a useful insight into the numerical 
solutions for more general conditions which will be discussed in 
the next section; in addition, they give approximations which 
may be used for quick engineering calculations. 

The free disc 
The integral momentum equations for a disc rotating in an 
infinite quiescent environment were first derived and solved by 
yon K~rmfin. 4 The entrained mass flow, the boundary layer 
thickness, and the shear stress on the disc obtained from von 
Kfirmfin's solution (in which n = 7  and fluid properties are 
assumed constant) are given by 

ml = 0.219(R%x 2)°" 8 (43) 

6" 
__ = 0.525(R%x 2)- o.2 (44) 
r 

r ~ . 2  = 0'0267(R% x2)- o.2 (45) 
pzf~ r 

Von Kfirmfin's solution has been extended to include heat 
transfer by Dorfman 5 using the Reynolds analogy between 
shear stress and heat flux. This solution is valid when Pr = 1, 
T 0 -  T 1 oc r 2, where T I is now the fluid temperature at large 
distances from the disc and frictional dissipation is negligible• 
Introducing a Nusselt number N u = r q o / k i ( T o - T i ) ,  this 
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solution gives 

Nu = 0.0267(R%x 2)°8 (46) 

Dorfman also considered the effect of varying Prandtl 
number and disc temperature distribution. His final expression 
for the Nusselt number may be written 

Nu = 0.0188(Re4,x2)°'aPr°6G(x) (47) 

where 

If0 ]02 G(x) = x°'65 (To -  TI) °'25 ( r  o - TI)L25X2"25 dx (48) 

Dorfman claims that his solution gives agreement with 
measurements from an isothermal disc. 

Owen ~6 has shown that the Reynolds analogy can be 
extended to include frictional heating. This effect should be 
included when the Eckert number 

~')2r2 
E = (49) 

2cp(To- Tl) 

is not negligibly small. For  Pr = 1 and T O - TI oc r 2, Equation 46 
still holds if the factor (i - E )  is inserted on the right side of the 
equation. Unfortunately, Dorfman's analysis is not easily 
extended to include frictional heating and, in the absence of any 
definitive experimental evidence it is not clear whether Equation 
47, or a modified form of it, is valid when frictional effects are 
significant. 

Ekman- layer  f l o w  

A solution of the integral momentum equations was found in I 
for the case in which the advective terms are negligible and the 
fluid properties are uniform; this is referred to above as the 
"linear solution." It is analogous to the linear Ekman-layer 
solution in laminar flow and is relevant to the constant-mass- 
flow boundary layer that develops once all the supplied fluid has 
been entrained into the boundary layers on the disc. It was 
shown in I that, although IV[ is assumed small in the derivation 
of the linear solution, Equation 26 is in surprisingly good 
agreement with measurements and with numerical solutions of 
the full equations for I vl up to 0.67. 

The linear solutions for V and &* are given by Equations 25 
and 26. The corresponding solution for z,,0, the shear stress on 
the disc, is 

(~.0)li. 1 CwRe~ 1 (50) 
pl[~2b 2 2nx 

Putting V= Vim in Equation 20, a higher-order estimate of z~. o 
may be deduced. For  n = 7, this gives 

Z~,o 1 CwRe~ 1 (1 - 0.1562o x -  1.625) (51) 
pi~2b 2 2nx 

This equation has a similar range of validity, as an 
approximation to the solution of the full integral equations, to 
that of Vii,. 

When Pr = 1 and T o - T I ocr 2, the Reynolds analogy, as for 
the free disc, gives the heat transfer from the disc. Details of this 
analogy are given by Chew)7 The resulting expression for the 
local Nusselt number, based on the disc-to-inlet temperature 
difference (T o - T0, is 

Nu = C w  (1 - Eb)(1 -- 0.15620x- L625) (52) 
21tX 

where Eb is the value of E evaluated at r = b. The range of 
validity of Equation 52 is similar to that for Equation 51 for the 
shear stress. 

For more general conditions the Reynolds analogy does not 
apply, and an explicit expression for an approximate value of 
Nu is not at present available. Work in progress will, it is hoped, 
remedy this situation. 

Average quant i t ies on the cavity disc 

Although the Ekman-layer solutions are not valid over the inner 
part of the disc, an estimate of the moment coefficient for the 
whole disc may be obtained by considering the angular- 
momentum balance for the cavity and assuming that the linear 
Ekman solution holds at r = b. The resulting expressions for the 
moment coefficient Cm (where Cm = 2M/pt['12b 5, where M is the 
moment on one face of the disc) is 

where the tangential velocity of the fluid entering the cavity in a 
stationary frame of reference is cf~a. 

From an energy balance equation for the cavity, and 
assuming the Ekman-layer solution at r=b, an expression for 
the average Nusselt number, Nuav, for the whole disc face may 
be deduced: this is defined as 

qavb 
Nuav = (54) 

ki(To.av -- TI) 

where qav and To,av , respectively, are the radially weighted 
average heat flux and disc temperature over the disc face. 
When Pr = 1 and T o - Tre f oc r 2, Equation 54 becomes 

Nuav=K C_~ b 2 T°'b-- TI (55) 
2n b 2 -  a 2 T0,av- T I 

where 

) (a/ K = l - E b - 0 . 8 3 3 2 o  (T°'b-Tref E b +c(2-c)E b (56) 
\ To,b- Tx 

The relationship (if any) between T~f and TI will depend on 
conditions at the inlet. When Pr ~ !, it may be assumed that, to a 
good approximation, 

Nuav=K pr Cw b2 To,b-- T I (57) 
2~ b 2 - a  2 To,av-T I 

For more general conditions, when the Reynolds analogy 
does not hold, a good approximation is given by 

Nuav PrCw b 2 T 0 , b - T i [  ( a )  2]  
= 2n b 2 - a  2 T ~ . ~ - ~  1-Eb+c(2-c)E~' -b (58) 

to the lowest order in the small quantities V and 0. 
When Cw is large and R% is small, the source region extends 

throughout the whole cavity. In this case, there are no Ekman- 
type layers on the discs and it may be assumed that the value of 
NUav given by Dorfman s for the free disc is appropriate. In this 
case, 

Nuav = 0.0470[G(1)] 4 Pr ~(Pr) T°'b - Ti To,a v __ TI (ae4,x2) 0"a (59) 

N u m e r i c a l  s o l u t i o n s  

The integral momentum equations 19 and 20 and the integral 
energy equation 42 have been solved numerically using a 
variable-step Gear method. The computations were started at 
x = a/b, which was assumed to be in the entrainment layer. The 
model described in I was used for this layer, so V = - 1 (a special 
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case for the free vortex),/~ = HI, and 7 is unknown. The starting 
values used for the computations were 6 = 10-4, ~, = 4 x 10-7, 
and I s = l z ;  it was found that the solutions were insensitive to 
starting values of 6 and 7 for smaller values than this. The 
computation was continued with increasing x until 7 had 
increased to the value unity. For  values of x greater than this, 
the integral equations were used to find 6, V, and 0 as functions 
of x in the region where the Ekman-type layer is present. Here it 
was assumed that dT/dx=0,  and 16 was obtained either by 
putting 16 = I3 or by putting dI6/dx = 0. The starting values for 
this part of the computation were found by assuming the 
dependent variables to be continuous at the transition from the 
entrainment layer to the Ekman-type layer. 

In the ensuing discussion, x will be retained as the dependent 
variable; for computational purposes it was convenient to use 
instead the variable ~ = x'/2o, where ;t o is defined in Equation 
27. Clearly, for the linear solution discussed above, Vii  n = - 1 / ~ .  

Most computations were carried out with a=42.75mm,  
b = 427.5 mm, and TI = 30°C. Values ofCw = 1400 and 14,000, of 
R % = 3 ×  106, and of P r = l  and 0.71 were used. Three 
temperature distributions on the disc were considered; these 
were T O = T I + 70°x 2, T x + 45 °, and T l + 14°/x. The local Nusselt 
number 

rqo Nu (60) k~(T0- 7"~) 
was computed and, with two exceptions, all the graphs show Nu 
as a function of x; in the other cases, the value of Nua~ is shown 
as a function of R% for various values of C~ and various 
distributions of T O . 

The effect of variable density within the boundary 
layer (Pr = 1) 

In the derivation given above of the integral equations, it was 
assumed that the density variation across the boundary layer is 
negligible. The validity of this assumption is now investigated. 
When the density is not assumed independent of z, integrals of 
the form 

1-Oh(q) r/ (61) 

I~ f(q) d Jr(0) = 1 --~(r / )  r/ (62) 
~ v  

f~ f2(r/) d J2(O)= l ~ q )  t/ (63) 

= I~ fl,1)g(,1). 
J3(O) 1 - ~  or/ (64) 

~ v  

1 J , ( o ) = ~ -  f~ o(,1) . 1 - -~(n)  (a~/ (65) 

and 

1 
ss(° )=~-o-  f~ °2('t) . 1 ----~q) off (66) 

arise instead of the integrals lk defined in Equation 17. 
(Jo(0) = 0 and Jk(0) =lj, for k = 1 to 5.) Equations 19 and 20 are 
still valid, but the coefficients Bk are now those given in the last 
column of Table 1. 

As discussed earlier, when P r =  1 and T o -  T x oc r z it may 
be assumed that h=g. Figure 2 shows comparisons between 
solutions for these conditions using both the full equations 
and the primitive equations. It can be seen that the difference 

between the two solutions is very small, in spite of the fact 
that the values of B h vary considerably in the two methods. 
The computation using the correction takes about 10 times as 
long as that for the primitive equations. Considering these 
results and the uncertainties involved in applying the correction 
in more general conditions, inclusion of this correction for 
prediction of Nusselt numbers is not thought to be worthwhile. 

The effect of viscous dissipation and compressive 
work (Pr= 1) 
Viscous dissipation will be significant when the Eckert number 
is not negligible. This parameter also governs the significance of 
the compressive work done on the air in the Ekman-type layers 
as it is transported through the radial pressure gradient. 

To isolate these effects, a comparison of solutions was 
obtained using the full integral energy equation 42 and an 
integral energy equation in which viscous dissipation and 
compressive work were neglected. The latter equation may be 
obtained by replacing H by T in Equations 42 and 43 and by 
dropping the term with the factor Q262 from Equation 42. For  
small rotational speeds, the difference between the solutions is 
negligible, but, as shown in Figure 3, at R% = 3 x 106, there are 
significant systematic differences between the two sets of results. 
For the results shown in the figure, the Eckert number E defined 
in Equation 49 has the value 0.08 when r=b. 

The effect of varying the Prandtl number 

As described above, the factors R and ~ are used to take account 
of the effect of the Prandtl number. Numerical experiments were 
carried out to determine the effect of using the approximations 
36 and 38 for these parameters rather than Equations 35 and 37 
for air. Figure 4 shows comparisons between the solutions, with 
Pr = 0.71 and T O - T I oc r 2, using the two sets of equations. It is 
clear that use of the approximate form causes little systematic 
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Figure 2 The effect of neglecting axial density gradients in the 
boundary layers 
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Figure 3 The effect of neglecting viscous dissipation 
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functions R and 

error and reduces computational time. It is suggested, therefore, 
that Equations 36 and 38 should be used for R and Z. 

The effect of  the temperature distribution on the disc 
( P r = 0 . 7 1 )  

Nusselt number predictions for three different temperature 
distributions are shown in Figure 5. Numerical results are given 
for both methods of estimating qo and 16 described above; the 
integral energy equation for method 1 (in which/6 = la )  being 
obtained by replacing g by ~ in Equation 42. As is to be expected, 
the numerical results are indistinguishable when T O = T I + 70x 2, 

W. Chew and R. H. Rogers 

but there is a noticeable difference for other temperature 
distributions. It should be noticed, however, that both methods 
give maximum values of Nu at approximately the same value of 
x, and the same applies to zero values ofNu. Thus the correction 
has the effect of requiring a multiplicative factor on the value of 
Nu; this is hardly surprising in view of the nature of the 
assumption made by the use of Equation 39. 

Whether the use of Equation 39 and the assumption that 16 is 
constant in the Ekman-type layer (and continuous with the 
value in the entrainment layer) is superior to the use of 
Equations 33 and 34 (where it is assumed that 16--[3) can be 
determined only by comparison with experiment. Some support 
for using the more complicated method is supplied by Dorfman 5 
who showed agreement between theory and the measurements 
by Cobb and Saunders TM of heat transfer from an isothermal 
disc rotating in air when dissipative effects are neglected. There 
is, however, some evidence that the second method may fail (due 
to excess stiffness) when there are large disc temperature 
gradients: in such cases, the first method may still be used. 

The average Nusselt number 

Figure 6 shows predictions of the variation of Nu~v with Re~ for 
two values of C~ and for increasing, constant, and decreasing 
disc temperature distributions; the value of 16 was computed 
using the more complicated method described above. The fall-off 
for large values of Re, and the negative values of N u ~  are due to 
the effects of frictional and compressive work, as discussed in the 
second subsection; the sharpness of the fall-off is remarkable. 
Clearly the mean Nusselt number is strongly dependent on the 
disc temperature distribution, on C~, and on Re¢,. The 
dependency on Re,  could be reduced somewhat by using an 
adiabatic disc temperature rather than the disc temperature 
itself in the definition of Nua~. However, this requires a 
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Figure 5 The effect of different disc temperature distributions 
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knowledge of the core velocity f, and this is not generally 
available in heat transfer experiments. 

Comparisons between the numerical results for Nu~ and the 
approximate analytical solutions given in the third section are 
shown in Figure 7. For Cw=1400, Ekman-layer theory is 
appropriate; good agreement between the numerical results and 
Equation 57 for the quadratic disc temperature distribution or 
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Figure 6 The average Nusselt number, Nu~, as a function of Re$, 
us ing  the  integral  so lu t ion:  (e) C w = 1 4 0 0 ;  (8) C w = 1 4 , 0  O0 

Equation 58 for other disc temperature distributions is found. 
The inadequacy of Equation 58 at low values of Re~ when 
Cw = 1400 in Figure 7(a) is attributed to nonlinear effects which 
are neglected in the derivation of the equations. For 
Cw= 14,000, the free-disc solution given by Equation 59 is 
appropriate at lower values of R%. At higher values of R%, the 
numerical results and the Ekman-layer theory are converging. 
Clearly, judicious use of Equations 57 to 59 can give useful 
estimates of the mean heat transfer, but some caution must be 
exercised in the intermediate region where neither the free-disc 
theory nor the Ekman-layer theory is appropriate. 

Comparison with experimental data 
Results from the present theory have been compared with heat 
transfer measurements by Long and Owen 1°'11 and by 
Northrop and Owen. 12 The most reliable experimental data is 
probably that of Northrop and Owen, who obtained heat 
transfer measurements for a rotating cavity of aspect ratio 
s/b = 0.138 with essentially the same temperature distributions 
on the two discs; an example of their results is shown in Figure 8. 
The positive, constant, and negative profiles in this figure 
indicate disc temperature distributions in which To was 
generally increasing, uniform, or decreasing with increasing r, 
respectively. In the experiments, air entered the cavity through a 
central hole 0~< x<  0.1 in one of the discs, and it left the cavity 
through a series of holes in the outer cylindrical shroud. 
Estimates of the local Nusselt numbers were obtained both from 
heat fluxmeter measurements and from the numerical solution 
of the heat conduction problem for the disc, the boundary 
conditions being supplied by the measured temperatures on the 
disc. As illustrated by the results in Figure 8, agreement between 
the fluxmeter measurements, the conduction solution, and the 
present theory is mainly good. Not surprisingly, some departure 
of the theory from the measurements was noted at relatively 
high values of Cw and low values of R% where the flow is no 
longer rotationally dominated. 

Figure 7 
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Conclusions 

It has been shown that the integral technique used for the 
momentum equations in Ref. 3 can be usefully extended to find 
temperature distributions and, hence, heat transfer from the 
discs of a symmetrically heated rotating cavity. It is concluded 
that, in the momentum equations, it is sufficient to neglect the 
variation of density across the boundary layers on the disc; that 
it is necessary at high rotational Reynolds numbers to include 
the effect of dissipation in the energy equation; and that 
approximate expressions may be used for the factors introduced 
to allow for a Prandtl number not equal to unity. The results do 
show some sensitivity to the assumptions made to account for 
the effect of a nonquadratic disc temperature distribution on the 
Reynolds analogy, and some caution in applying the method to 
nonquadratic temperature distributions may be advisable. 

Agreement between the present predictive method and 
measurements has been demonstrated by Long and Owen 1°'tl 
and by Northrop and Owen. 12 
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Appendix: Formulae for the surface heat flux 
and the total enthalpy profile 

The modified Reynolds analogy result 

It is assumed that the relationship between the surface heat flux 
and the tangential component  of the surface shear stress is of the 
form 

qo { ~  ,~ Rt~2"~ z4,,o 
~ e e = X ~ ' o - ' -  2~pp/ ~- (67) 

where X depends on the Prandtl  number  and on the disc 
temperature distribution, and R depends on the Prandtl  number  
only. The Nusselt number  is defined as 

Nu* = rq° (68) 
kl(To - ~ -  R~2/2cp) 

and it follows that 

Nu* = Pr X rr*~ ° (69) 

In the special case for which T O - T I  ocr 2, t 31=-Oa ,  and 
Pr = 1, Equation 67 must reduce to the Reynolds analogy (see 
Chew17). In this case, therefore, l =  1 and R =  1. This will be 
used as a "reference case," and the subscript ref will be used 
where appropriate. In the reference case, Equation 69 reduces to 

Nu*r=r(Z*'° ~ (70) 
\ ~1/) //ref 

and the total enthalpy profile is similar to that of the tangential 
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component of velocity, so that 

href(rh x)=g(rl) (71) 

The effect of  Prandtl number 

It is useful to consider the special case of the free disc for which 
To= To,ref, v = - f i r ,  pz=pl, lh=lh, and T =  Tx. The subscript 
spec is used to indicate this case, and it is assumed that Xs~ 
depends on Pr only. It is convenient to write ~=Z,r~, so 
Equations 67 and 69 become 

q°'sl~c--(/Toref T Rf2r2~(z*'°) 'P~ 
~p ~ ' - ' - ~ p - p  J ~ r r  (72) 

and 

Nus*p~ = - Pr ( (z*'°)~P~ (73) 
fi#I 

The values of ( and R are taken to be those given in Equations 
35 and 37 or, more usually, by the approximations 36 and 38. 

When dissipation is neglected, Equation 42 for this case may 
be rearranged to give 

_d ] (VroO),  
dx L ( (7To0)sp ~ = 21, x (74) 

For Pr = 1 it is assumed that ~ = 1 and I6,,p~ = I3; consideration 
of the above equation (in which only I6,sp~ and ~ depend on Pr) 
shows that 

11 - I6,spec = ~(I1 - 13) (75) 

The effect of disc temperature distribution 

It is possible to use a generalization of the method described by 
Dorfman 5 and to define a thermal Reynolds number  

RT =Pl(u2 + f f* uo(HoU(H- l~)- H) dz (76) 

In terms of the notat ion of this paper, Equation 76 gives 

RT = Pl (Uo 2 + 62)o.53.(11 _ I6) (77) 
#l 

It is assumed that, in general, 

Nu* = F(ar)  Re R{ (78) 

where F(Pr) is a universal function of Prandtl  number,  fl is a 
universal constant,  and Re is a local Reynolds number  defined 
by 

Re = p,(u 2 + t32) °'5 r (79) 
/h 

(In general, R T depends on Pr through the total enthalpy 
profile.) 

Since fl and F(Pr) are universal functions, they may be 
determined by consideration of the special cases described in the 
first two sections. Using relations 23 for the shear stress in 
Equation 70, one can show that, under appropriate conditions, 
Equation 78 reduces to Equation 70 when 

fl = 3 - 2~ (80) 

and 

r"~ (81) 
F(1)=  (11-13}* 
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Similarly, Equations 78 and 74 are consistent as long as 

F(Pr) ( _1_1-1 s ~ 
F(1) \II-I6,sr'ec/ Pr~ (82) 

Substituting from Equations 75 and 81 gives 

K~ Pr ~1 -~ 
F (P r ) -  (ll_is)~ (83) 

Comparing the expressions for Nu in Equations 69 and 78 and 
using Equations 23, 77, 79, 80 and 83 gives 

i1_16 3 - 2 ~  2 ( ~ - 1 )  
,84, 

The entrainment layer in a rotat ing cavity 

In this region H 0 and 0 are known, and it is assumed that 
Equation 84 is valid. Then Equation' 43 is used to determine 16 
and, hence, Z- Under the appropriate conditions, this method 

reproduces the solution given by Dorfman 5 and the Reynolds 
analogy results. 

The Ekman-type layer in a rotat ing cavity 

Here Ho is known, but neither 0 nor 16 are known. Hence 
Equation 43 is inadequate to determine both unknowns, and an 
extra relationship is required. The simplest method is to assume 
that the enthalpy profile is similar to that of the tangential 
component of velocity; this gives I6 = I3 and Z = ~. It is evident 
that this is only an approximation and cannot be used unless the 
same assumption is made for the entrainment layer. Its 
justification is that results using integral methods are only 
weakly dependent on the form of the profiles chosen. 

More sophisticated approaches have been tried: these give 
solutions which are significantly different from each other when 
theoretical profiles (other than quadratic ones) are used for the 
disc temperature, but which all agree with the available 
measurements to the level of experimental uncertainty. The 
method recommended here is to assume that 16 is constant in the 
Ekman-type layer and to put dI6/dx= 0. 
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